
TFY 4305 Nonlinear dynamics, autumn 2005.
Solutions to exercises

Strogatz, exercise 2.2.13

The equation of motion is
mv̇ = mg − kv2 ,

where v is the velocity of the skydiver, m is the mass, g is the acceleration of gravity, and k
is called the drag constant. As always, v̇ = dv/dt is the time derivative.
We assume that v ≥ 0, defining downwards as the positive direction. If v < 0, we would have
mv̇ = mg + kv2.

a) To solve the equation, we separate the variables v and t, writing

m dv

mg − kv2
= dt .

Introducing an integration constant t0, we get that

t− t0 =
∫

dt =
∫

m dv

mg − kv2
=
∫

m dv

2
√

mg

(
1

√
mg +

√
k v

+
1

√
mg −

√
k v

)
=

m

2
√

mgk

(
ln
∣∣∣√mg +

√
k v
∣∣∣− ln

∣∣∣√mg −
√

k v
∣∣∣)

=
√

m

2
√

gk
ln

∣∣∣∣∣
√

mg +
√

k v
√

mg −
√

k v

∣∣∣∣∣ .
Let us introduce the constants

V =
√

mg

k
, T =

1
λ

=
V

g
=
√

m

gk
.

We see that V has the dimension of velocity, and T has the dimension of time. We
choose t0 = 0, that is, we start our clocks at the time t0. Then we have the equation

t =
T

2
ln
∣∣∣∣V + v

V − v

∣∣∣∣ = 1
2λ

ln
∣∣∣∣V + v

V − v

∣∣∣∣ ,
or, assuming 0 ≤ v < V ,

e2λt =
V + v

V − v
.

Which we solve for v, getting

v = v(t) = V
e2λt − 1
e2λt + 1

= V
eλt − e−λt

eλt + e−λt
= V tanh(λt) = V tanh

(
gt

V

)
.

This solution for v(t) satisfies the initial condition v(0) = 0.

b) Since v(t)→ V as t →∞, the physical meaning of V =
√

mg/k is that it is the terminal
velocity.
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c) The equation is v̇ = f(v) with

f(v) = g − kv2

m
.

The fixed point equation, f(v) = 0, has the unique solution v =
√

mg/k = V (remember
our restriction that v ≥ 0).
This fixed point is stable, since the derivative f ′(v) = −2kv/m is negative at v = V .
Hence, v will converge to the fixed point V , in other words, V is the terminal velocity.

d) The average velocity is

Vavg =
31400 ft− 2100 ft

116 s
= 252.6 ft/s = 252.6× 0.3048 m/s = 77.0 m/s .

Conversion: 1 ft = 12 in = 12× 2.54 cm = 30.48 cm.

e) The distance fallen is

s(t) =
∫ t

0
dt′ v(t′) = V

∫ t

0
dt′ tanh

(
gt′

V

)
=

V 2

g
ln cosh

(
gt

V

)
.

If x >> 1, then clearly

ln coshx = ln

(
ex + e−x

2

)
≈ ln

(
ex

2

)
= x− ln 2 .

With this (very good) approximation, we have that

s =
V 2

g

(
gt

V
− ln 2

)
= V t− V 2 ln 2

g
.

Or rewritten,

V 2 − gt

ln 2
V +

gs

ln 2
= 0 .

The two solutions of this equation are

V =
gt

2 ln 2
±

√(
gt

2 ln 2

)2

− gs

ln 2
.

The positive sign in front of the square root gives a value for V which depends on t,
more specifically, it increases linearly with t at large t, and this does not make sense.
The negative sign gives a value for V going to a constant at large t, this is the one we
want. However, if we compute

V =
gt

2 ln 2
−

√(
gt

2 ln 2

)2

− gs

ln 2

as it stands, at large t, we get the answer as a small difference between two large
quantities, and from a numerical point of view this is not the best way to compute. A
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better way is to write instead

V =

(
gt

2 ln 2 −
√(

gt
2 ln 2

)2
− gs

ln 2

)(
gt

2 ln 2 +
√(

gt
2 ln 2

)2
− gs

ln 2

)
gt

2 ln 2 +
√(

gt
2 ln 2

)2
− gs

ln 2

=
gs
ln 2

gt
2 ln 2 +

√(
gt

2 ln 2

)2
− gs

ln 2

=
2gs

gt +
√

(gt)2 − 4gs ln 2
.

In the limit of large t we see that

V ≈ 2gs

2gt
=

s

t
= Vavg = 77.0 m/s .

But remember that we made an approximation to arrive at this result. The more accu-
rate answer for the terminal velocity is

V =
√

mg

k
= 265.7 ft/s = 81.0 m/s .

Strogatz, exercise 2.3.1

The logistic equation,

Ṅ = rN

(
1− N

K

)
,

with positive constants r (growth rate for a small population) and K (carrying capacity) is
separable, and may be written as

r dt =
K dN

N(K −N)
= dN

(
1
N

+
1

K −N

)
.

Integrating and introducing an integration constant t0 we get

r(t− t0) = ln |N | − ln |K −N | = ln
∣∣∣∣ N

K −N

∣∣∣∣ .
If 0 < N < K, then we get that

N

K −N
= er(t−t0) ,

hence,

N =
K er(t−t0)

er(t−t0) + 1
=

K

1 + e−r(t−t0)
.

In the two limits t0 → ±∞ we get N = 0 or N = K, which are actually two constant solutions
of the original equation.

Another possibility is that 0 < K < N , then we get that

N

N −K
= er(t−t0) ,
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hence,

N =
K er(t−t0)

er(t−t0) − 1
=

K

1− e−r(t−t0)
.

For t < t0 this gives N < 0, which is a mathematical (but unphysical) solution of the equation.
The second method suggested for solving the equation is to substitute x = 1/N , this gives

ẋ = − Ṅ

N2
= −rN(K −N)

KN2
= −r(K −N)

KN
= −rx +

r

K
,

an inhomogeneous linear ordinary differential equation for x(t). We may solve it by separation
of variables. Or else we note that x(t) = 1/K is one particular solution, and the general
solution of the homogeneous equation ẋ = −rx is x(t) = e−r(t−t0). Hence, the general solution
of the inhomogeneous equation is

x =
1
N

=
1
K

+ e−r(t−t0) .

This general solution with t0 real and finite, has 0 < N < K, and N increasing towards K.
However, at this point we have to be careful. In fact, since t0 is arbitrary, it could be −∞,
which gives the constant solution

x =
1
N

=
1
K

.

And t0 could even be complex, for example

t0 = t′0 + i
π

r
,

with t′0 real, so that we get a decreasing solution for N ,

x =
1
N

=
1
K
− e−r(t−t′0) .

Strogatz, exercise 2.3.3 and 2.4.8

The Gompertz law for tumor growth, Ṅ = −aN ln(bN), may be rewritten like this:

d
dt

ln(bN) = −a ln(bN) .

Here a and b are positive constants. The general solution is

ln(bN) = C e−at ,

where C is a constant which may be positive, negative, or zero. The limiting value as t →∞
is anyway that ln(bN) = 0, hence bN = 1, which shows that N = 1/b is the only fixed point
with N > 0, and it is stable.

Actually, N = 0 is a fixed point of the original equation Ṅ = −aN ln(bN). It is true that
ln(bN)→ −∞ as N → 0, but it is also true that N ln(bN)→ 0 as N → 0.

The “double exponential” time dependence

N(t) =
1
b

eC e−at
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may seem strange. It means for t ≈ 0 that

N(t) ≈ 1
b

eC(1−at) =
eC

b
e−Cat ,

and for t →∞ that
N(t) ≈ 1

b
(1 + C e−at) .

For t ≈ 0 we have the exponential growth rate Ṅ/N = −Ca, which is positive when C is
negative.
In the limit t → ∞ we have exponential convergence to the fixed point N = 1/b, with a
different rate a.

The parameter a determines the time scale in the system, it is (proportional to) the cell
division rate, i.e., the number of cell generations per time. More precisely: we may choose
C = ln b such that N = 1 for t = 0, and we see then that the growth rate for a single cancer
cell is −Ca = −a ln b. Which we may also see more directly by setting N = 1 in the equation
Ṅ = −aN ln(bN).

If N is the number of cancer cells in the tumor, then 1/b is the number of cells in the
tumor when it has a stable size and is neither growing nor shrinking.

Linear stability analysis for the fixed point N = 1/b gives the equation ṅ = λn, where

N =
1
b

+ n ,

and n is small, and where

λ =
d

dN
(−aN ln(bN))

∣∣∣∣
N=1/b

= (−a ln(bN)− a)|N=1/b = −a .

This shows that the fixed point is stable (we assumed a > 0).

Strogatz, exercises 2.4.2, 2.4.4 and 2.4.7

Given the equation ẋ = f(x). The fixed points are given by the equation f(x) = 0.
Linear stability analysis says that a fixed point x∗ is stable if f ′(x∗) < 0 and unstable if
f ′(x∗) > 0.
In the case f ′(x∗) = 0, linear stability analysis is insufficient (but we may look at the sign of
the first of the derivatives which is nonzero).

2.4.2 f(x) = x(1− x)(2− x) = x(x− 1)(x− 2), f ′(x) = (x− 1)(x− 2) + x(x− 2) + x(x− 1).
Fixed points are x = 0, x = 1 and x = 2. Since f ′(0) = 2, f ′(1) = −1 and f ′(2) = 2,
x = 1 is stable, x = 0 and x = 2 are unstable.

2.4.4 f(x) = x2(6− x), f ′(x) = 12x− 3x2 = 3x(4− x), f ′′(x) = 12− 6x.
Fixed points are x = 0 and x = 6. Since f ′(0) = 0, and f ′(6) = −36, x = 6 is stable,
x = 0 needs a closer look. Since f ′′(0) = 12, we have f(x) > 0 for x close to 0, x 6= 0.
Hence the fixed point x = 0 is half stable: stable from the left (x < 0), unstable from
the right (x > 0).
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2.4.7 f(x) = ax− x3, f ′(x) = a− 3x2.
Independent of the value of a, x = 0 is a fixed point. Since f ′(0) = a, x = 0 is a stable
fixed point for a < 0, but unstable for a > 0. For a = 0, x = 0 is also a stable fixed
point, because then f(x) = −x3 is positive for x < 0 and negative for x > 0.
If a > 0 there exist two other fixed points, x = ±

√
a. Both are stable, because

f ′(±
√

a) = −2a < 0.
What happens at a = 0 is the prototype of a supercritical pitchfork bifurcation: one
stable fixed point becoming unstable, with two stable fixed points branching off.

Strogatz, exercise 2.4.9

The equation ẋ = −x3 may be written as

−dx

x3
= dt ,

assuming that x 6= 0. It may then be integrated directly:

1
2x2

= t− t0 ,

where t0 is an integration constant. For t > t0 we have then the explicit solutions

x(t) = ± 1√
2(t− t0)

.

In addition we have the solution x(t) = 0.
For t →∞ we have that x(t)→ 0, but much more slowly than exponentially.

Strogatz, exercise 2.5.6

a) Water runs out of the bucket with velocity v through a hole of area a. The volume of
water running through the hole during an infinitesimal time interval dt is a|v|dt. The
reduction of the water volume in the bucket, in the same time interval, is A|ḣ|dt, where
A is the surface area, h is the height of the water in the bucket, and ḣ = dh/dt.
Since the total volume of the water is constant, the two volumes must be equal:
a|v|dt = A|ḣ|dt, that is, a|v| = A|ḣ|.
Let us take the positiv direction to be up, then v < 0 and ḣ < 0, hence

av = Aḣ .

b) We imagine removing a layer of water of thickness |∆h|, from the top of the water. This
water has a volume of A |∆h| and a mass of ρA |∆h|, where ρ is the density of water.
The kinetic energy of the same amount of water running out through the hole in the
bottom, is (1/2)(ρA |∆h|)v2.
We now compare this kinetic energy to the reduction in the potential energy of the
water. The net result is that water is removed at the top and emerges through the hole
in the bottom, a distance h below the top. This reduces the total potential energy of
the water in the bucket by (ρA |∆h|)gh, where g is the acceleration of gravity.

6



Neglecting friction, and assuming that all the potential energy removed is converted
into kinetic energy, we have that

(1/2)(ρA |∆h|)v2 = (ρA |∆h|)gh ,

which gives the equation
v2 = 2gh .

c) With ḣ < 0 we have, according to the two equations that

ḣ =
a

A
v = − a

A

√
2gh = −C

√
h ,

with C = a
√

2g/A.

d) We rewrite the equation as

−C dt =
dh√

h
,

and integrate, with an arbitrary integration constant t0. This gives that

−C(t− t0) = 2
√

h .

Hence,

h(t) =
C2

4
(t− t0)2 =

ga2

2A2
(t− t0)2 .

But the equation ḣ = −C
√

h, with C > 0, implies that ḣ ≤ 0. Therefore we have to
splice two different solutions to one solution:

h(t) =

 ga2

2A2 (t− t0)2 for t ≤ t0 ,

0 for t ≥ t0 .

This spliced solution solves the equation ḣ = −C
√

h for all times. It has h > 0 before
the time t0, and h = 0 after t0, and the time t0 when there is no more water left is
arbitrary and can not be determined from the equation.

Strogatz, exercise 2.6.1

The harmonic oscillator mẍ = −kx is a two dimensional system in our terminology. We have
to introduce a new variable, for example the momentum p = mẋ, so that we get two first
order equations: ẋ = p/m, ṗ = −kx. What we call the phase space of the oscillator, with
variables x and p, is two dimensional.
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