
TFY 4305 Nonlinear dynamics, autumn 2005.
Solutions to exercises

Strogatz, exercise 4.1.8

The equation −dV/dθ = f(θ) has the solution

V (θ) = −
∫

dθ f(θ) .

The integration constant is uninteresting.
If f(θ) = cos θ, then V (θ) = − sin θ, which is a singlevalued function on the circle.
If f(θ) = 1, then V (θ) = −θ, but this is not a singlevalued function on the circle.
The general condition for singlevaluedness is that

V (2π)− V (0) = −
∫ 2π

0
dθ f(θ) = 0 .

Strogatz, exercise 5.1.9

c) The equation of motion is linear, of the form(
ẋ
ẏ

)
=

(
0 −1
−1 0

)(
x
y

)
.

The matrix

A =

(
0 −1
−1 0

)
has the characteristic equation, determining eigenvalues,

0 = det(A− λI) =

∣∣∣∣∣ −λ −1
−1 −λ

∣∣∣∣∣ = λ2 − 1 ,

with roots λ = ±1. This shows that the origin is a saddle point, with one stable direction,
which is the egenvector of eigenvalue −1, and one unstable direction, which is the
egenvector of eigenvalue 1. The eigenvalue equation

A

(
α
β

)
= λ

(
α
β

)

with eigenvalue λ = −1 gives the stable direction, which is the egenvector

u− =

(
1
1

)
,

whereas the same eigenvalue equation with the eigenvalue λ = 1 gives the unstable
direction, which is the egenvector

u+ =

(
1
−1

)
.
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The stable manifold of the fixed point at the origin is the special solution converging to
the origin when t →∞, (

x(t)
y(t)

)
= Ce−t u− = Ce−t

(
1
1

)
.

The solution is unique up to an integration constant C. Thus, the stable manifold is
given by the equation x = y.

The unstable manifold is the special solution converging to the origin when t → −∞,(
x(t)
y(t)

)
= Det u+ = Det

(
1
−1

)
.

This solution is also unique up to an integration constant D. In other words, the unstable
manifold is given by the equation x = −y.

d) For new variables u = x + y and v = x− y we get the equations

u̇ = ẋ + ẏ = −y − x = −u , v̇ = ẋ− ẏ = −y + x = v .

The solution with initial conditions u(0) = u0 and v(0) = v0 is u(t) = u0e−t, v(t) = v0et.

e) The stable manifold is given by the equation v = 0, the unstable manifold has u = 0.

f) Since u0 = x0 + y0 and v0 = x0 − y0, we have the solutions

x(t) =
1
2

(u(t) + v(t)) =
1
2

((x0 + y0)e−t + (x0 − y0)et) = x0 cosh t− y0 sinh t ,

y(t) =
1
2

(u(t)− v(t)) =
1
2

((x0 + y0)e−t − (x0 − y0)et) = y0 cosh t− x0 sinh t .

We easily verify that this is a solution of the equations ẋ = −y, ẏ = −x with initial
values x(0) = x0, y(0) = y0. Since there exists only one solution, by the uniqueness
theorem, this is the Solution, with a capital S.

Strogatz, exercise 5.1.13

The linear stability analysis at a saddle point (x∗, y∗) shows one stable direction v− and one
unstable direction v+, in fact this is the defining property of a saddle point. We may introduce
these two directions as new coordinate axes, relative to this coordinate system an arbitrary
point (x, y) has new coordinates (x−, x+) with(

x
y

)
=

(
x∗
y∗

)
+ x−v− + x+v+ .

The linearized equations of motion, expressed in the new coordinates, are

ẋ− = λ− x− , ẋ+ = λ+ x+ ,
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where λ− < 0 and λ+ > 0 are the two eigenvalues characterizing the saddle point. The
linearized equations of motion in this form form a gradient system, as defined in Chapter 7.2
in Strogatz,

ẋ− = − ∂V

∂x−
, ẋ+ = − ∂V

∂x+
,

with the potential function

V = V (x−, x+) =
1
2

(λ− x 2
− + λ+ x 2

+) .

Since λ− < 0 and λ+ > 0, the graph of V (x−, x+) looks like the saddle of a horse. Hence the
name saddle point.

Strogatz, exercise 5.2.1

The equation of motion has the form(
ẋ
ẏ

)
= A

(
x
y

)

with

A =

(
4 −1
2 1

)
.

The characteristic equation is

0 = det(A− λI) =

∣∣∣∣∣ 4− λ −1
2 1− λ

∣∣∣∣∣ = λ2 − 5λ + 6 ,

and it gives the eigenvalues λ = λ1 = 3 and λ = λ2 = 2. Two positive eigenvalues means that
the origin is an unstable node.

The eigenvalue equation

A

(
α
β

)
= λ

(
α
β

)
with λ = λ1 = 3 or λ = λ2 = 2 gives the two egenvectors

v1 =

(
1
1

)
, v2 =

(
1
2

)
.

The general solution of the equation of motion is

x(t) = c1eλ1tv1 + c2eλ2tv2 =

(
c1e3t + c2e2t

c1e3t + 2c2e2t

)
.

Here c1 and c2 are constant coefficients, they may be determined for example from a given
starting point at t = 0,

x(0) = c1v1 + c2v2 =

(
c1 + c2

c1 + 2c2

)
=

(
x0

y0

)
.
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This gives that
c1 = 2x0 − y0 , c2 = y0 − x0 ,

and,

x(t) = x0

(
2e3t − e2t

2e3t − 2e2t

)
+ y0

(
−e3t + e2t

−e3t + 2e2t

)

=

(
2e3t − e2t −e3t + e2t

2e3t − 2e2t −e3t + 2e2t

)(
x0

y0

)
.

This method is straightforward, but requires us to compute the egenvectors. Here is a
method giving the answer without explicit knowledge of the eigenvectors. The equation

ẋ = Ax

with A constant has the solution
x(t) = etA x(0) ,

where the exponential function has the usual power series expansion,

etA = I + tA +
1
2!

(tA)2 + · · ·+ 1
n!

(tA)n + · · · .

Thus, the problem is reduced to the summation of this series. Then we may use a mathematical
theorem saying that every matrix A is a root of its own characteristic polynomial, which for
our matrix A is λ2− 5λ + 6, so that A satisfies the equation A2− 5A + 6I = 0, where I is the
unit matrix. From the equation

A2 = 5A− 6I

follows that

A3 = AA2 = A(5A− 6I) = 5A2 − 6A = 5(5A− 6I)− 6A = 19A− 30I .

A4 = AA3 = A(19A− 30I) = 19A2 − 30A = 19(19A− 30I)− 30A = 331A− 570I .

And so on. We might have used these relations directly to sum the series etA, but instead let
us use a small trick. We realize that the answer must have the form

etA = f(t)I + g(t)A ,

where f(t) and g(t) are two functions of t to be determined. We also realize that if λ is an
eigenvalue, then λ2 = 5λ− 6, and this relation gives that

etλ = f(t) + g(t)λ ,

with the same two functions f(t) and g(t). Since the eigenvalues are λ = 3 and λ = 2, we
have that

e3t = f(t) + 3g(t) ,

e2t = f(t) + 2g(t) .

4



Hence,

g(t) = e3t − e2t ,

f(t) = −2e3t + 3e2t .

And, finally,

etA = f(t)I + g(t)A =

(
f(t) + 4g(t) −g(t)

2g(t) f(t) + g(t)

)
=

(
2e3t − e2t −e3t + e2t

2e3t − 2e2t −e3t + 2e2t

)
.

Strogatz, exercise 5.2.13

The equation of motion of the damped harmonic oscillator is

mẍ + bẋ + kx = 0 .

Here x is the position, in one dimension, m is the mass, b the friction coefficient, and k is the
spring constant. All these constants are assumed to be positive.

From classical mechanis we learn to introduce the momentum p = mẋ, it gives the equa-
tions

ẋ =
p

m
, ṗ = −bp

m
− kx .

An aside: does there exist a Hamiltonian function H such that

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
?

If so, we must have that

0 =
∂

∂x

(
∂H

∂p

)
− ∂

∂p

(
∂H

∂x

)
=

∂

∂x

(
p

m

)
− ∂

∂p

(
bp

m
+ kx

)
= − b

m
,

hence b = 0, meaning there is no damping. Strangely enough, however, even when b 6= 0 it is
possible to find a Hamiltonian function which is explicitly time dependent. Multiplying the
original equation of motion by eαt, where α = b/m, we may rewrite it like this:

d
dt

(
eαt mẋ

)
+ eαt kx = 0 .

Then we define p = eαt mẋ and

H = e−αt p2

2m
+ eαt kx2

2
.

Back to our linear system of equations(
ẋ
ṗ

)
= A

(
x
p

)
with A =

(
0 1

m
−k − b

m

)
.

The sum of the eigenvalues of the matrix A is

τ = Tr A = − b

m
< 0 ,
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and their product is

∆ = detA =
k

m
> 0 .

Since ∆ > 0, both eigenvalues must have a negative real part, hence the origin is always a
stable fixed point. It is a stable node if the eigenvalues are real, that is, if

τ2 − 4∆ =
b2 − 4km

m2
≥ 0 , or equivalently, b ≥ 2

√
km .

This is the case called overdamping: the damping is so large that the oscillator does not
oscillate even once. The limiting case b = 2

√
km is called critical damping.

In the opposite case, b < 2
√

km, the origin is a stable spiral, which means that the dam-
ping is small enough that the oscillator will really oscillate, with an exponentially decreasing
amplitude.

The case of critical damping is interesting. Any matrix satisfies its own eigenvalue equa-
tion, and in particular, our 2× 2 matrix A satisfies the equation

(A− λ1I)(A− λ2I) = 0 ,

where λ1, λ2 are the eigenvalues. When the damping is critical, it means that λ1 = λ2, and

(A− λ1I)2 = 0 .

If a 2× 2 matrix has two linearly independent eigenvectors with the same eigenvalue, then it
is proportional to the identity matrix I. In the present case it is obvious that A−λ1I 6= 0, this
means that A has two equal eigenvalues, but only one eigenvector. Since we have (A−λ1I)k = 0
for k ≥ 2, the series expansion for et(A−λ1I) gives that

etA = eλ1t et(A−λ1I) = eλ1t (I + t(A− λ1I)) .

Thus, the general solution of the equation of motion for the oscillator is(
x(t)
p(t)

)
= etA

(
x(0)
p(0)

)
= eλ1t (I + t(A− λ1I))

(
x(0)
p(0)

)
.

There are now two possibilities. Let us define

w = (A− λ1I)

(
x(0)
p(0)

)
.

We may have w = 0, this means that the starting point (x(0), p(0)) lies on the single eigen-
vector of A, and the solution is purely exponential,(

x(t)
p(t)

)
= eλ1t

(
x(0)
p(0)

)
.

The other possibility is that w 6= 0. Then w is proportional to the single eigenvector of A,
since the identity (A− λ1I)2 = 0 implies that

(A− λ1I)w = (A− λ1I)2
(

x(0)
p(0)

)
= 0 .
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Then as t →∞ we have that (
x(t)
p(t)

)
→ t eλ1t w .

We see that, in the case of critical damping, for an arbitrary staring point (x(0), p(0)) the
system will converge exponentially towards the stable fixed point (x, p) = (0, 0) along the
direction of the single eigenvector of A.
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