TFY 4305 Nonlinear dynamics, autumn 2005.
Solutions to exercises
Strogatz, exercise 4.1.8

The equation —dV/d# = f(0) has the solution

V(9) = —/d9 (6) .

The integration constant is uninteresting.

If f(0) = cos@, then V(0) = —sin 6, which is a singlevalued function on the circle.
If f(0) =1, then V() = —0, but this is not a singlevalued function on the circle.
The general condition for singlevaluedness is that

V(2r) — V(0) = — 0277 d6 £(6) =0 .

Strogatz, exercise 5.1.9

c¢) The equation of motion is linear, of the form

()= 3)6)
R

has the characteristic equation, determining eigenvalues,

The matrix

-2 -1

— )2 _
1 ) =X-1,

0 = det(A — AI) = ’

with roots A = +1. This shows that the origin is a saddle point, with one stable direction,
which is the egenvector of eigenvalue —1, and one unstable direction, which is the
egenvector of eigenvalue 1. The eigenvalue equation

o o
A =A
with eigenvalue A = —1 gives the stable direction, which is the egenvector

(1),

whereas the same eigenvalue equation with the eigenvalue A = 1 gives the unstable
direction, which is the egenvector



The stable manifold of the fixed point at the origin is the special solution converging to

the origin when ¢ — oo,
x(t) ) _ ot ot 1
(y(t)>—Ce u_ =Ce e

The solution is unique up to an integration constant C. Thus, the stable manifold is
given by the equation z = y.

The unstable manifold is the special solution converging to the origin when ¢t — —oo,

z(t) N\ _ e _ Pt 1
(y(t)>_De u; = De (_1>.

This solution is also unique up to an integration constant D. In other words, the unstable
manifold is given by the equation =z = —y.

d) For new variables u = z + y and v = x — y we get the equations
w=x+y=-—-y—r=—u, vV=t—y=—-y+r=v.
The solution with initial conditions u(0) = ug and v(0) = vg is u(t) = uge™*, v(t) = voe'.
e) The stable manifold is given by the equation v = 0, the unstable manifold has u = 0.

f) Since ug = xo + yo and vg = x9 — Yo, we have the solutions

1 1 .
z(t) = 3 (u(t) +v(t)) = 9 ((zo +yo)e " + (zo — yo)e") = zgcosht — ygsinht ,
1 1 _ .
y(t) = 3 (u(t) —v(t)) = 3 ((zo +yo)e " — (zo — yo)e') = yocosht — xgsinht .
We easily verify that this is a solution of the equations & = —y, y = —x with initial

values x(0) = zo, y(0) = yo. Since there exists only one solution, by the uniqueness
theorem, this is the Solution, with a capital S.

Strogatz, exercise 5.1.13

The linear stability analysis at a saddle point (z,y«) shows one stable direction v_ and one
unstable direction v, in fact this is the defining property of a saddle point. We may introduce
these two directions as new coordinate axes, relative to this coordinate system an arbitrary
point (z,y) has new coordinates (x_, ;) with

u = L +rx_v_+xT.V
) Yx S LA

The linearized equations of motion, expressed in the new coordinates, are

.’I.J_:)\_l'_, .’I.J+:)\+$+,



where A\ < 0 and Ay > 0 are the two eigenvalues characterizing the saddle point. The
linearized equations of motion in this form form a gradient system, as defined in Chapter 7.2
in Strogatz,

P oV b = oV
T Ox_ ’ T (‘3x+ ’
with the potential function
1
V=V(_,zq4) = 5 A—z?4+x12d).

Since A_ < 0 and Ay > 0, the graph of V(z_,z) looks like the saddle of a horse. Hence the
name saddle point.

Strogatz, exercise 5.2.1

The equation of motion has the form

with

The characteristic equation is

4-x -1

0:det(A—)\I):‘ 9 1-1

|:>\2—5)\+6,

and it gives the eigenvalues A = A\; = 3 and A = Ay = 2. T'wo positive eigenvalues means that

the origin is an unstable node.
Al S ) =2 %

The eigenvalue equation
with A = A1 =3 or A = Ay = 2 gives the two egenvectors

(1) ()

The general solution of the equation of motion is

3t 2

At Aot c1€ C2€

X(t) = c1e™t'vy + e’ vy = .
( ) 1 1 2 2 < cleSt 2626%

Here ¢; and co are constant coefficients, they may be determined for example from a given
starting point at ¢ = 0,

c1+ ¢ T
X(O)201V1+C2V2: ( 611+ 2022 ) = ( y(()) )
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This gives that
1 =2x9 — Yo , C2 = Yo — o ,

and,
963t _ o2t _ Bt g o2
x(t) = o ( 963t _ 902t + %o _ Bt 1 92t
B 963t _ o2t _gBt 4 o2 0
T\ 2% — 20t 3t 4 2%t vo |-

This method is straightforward, but requires us to compute the egenvectors. Here is a
method giving the answer without explicit knowledge of the eigenvectors. The equation

x = Ax

with A constant has the solution
x(t) = e x(0) ,

where the exponential function has the usual power series expansion,

1 1
etA:I—I—tA+§(tA)2+--'+E(tA)”—I—---.

Thus, the problem is reduced to the summation of this series. Then we may use a mathematical
theorem saying that every matrix A is a root of its own characteristic polynomial, which for
our matrix A is A2 — 5\ + 6, so that A satisfies the equation A2 — 54 + 61 = 0, where I is the
unit matrix. From the equation

A% =5A—61
follows that

A3 = AA? = A(BA —61) = 5A% —6A = 5(5A — 61) — 6A = 194 — 301 .
At = AA3 = A(19A — 301) = 1942 — 304 = 19(19A — 301) — 30A = 331A — 5701 .

And so on. We might have used these relations directly to sum the series e, but instead let
us use a small trick. We realize that the answer must have the form

e = F(O)I +g()A

where f(t) and g(t) are two functions of ¢ to be determined. We also realize that if A is an
eigenvalue, then A\? = 5\ — 6, and this relation gives that

e = f(t) +g(t)A,

with the same two functions f(¢) and g(¢). Since the eigenvalues are A = 3 and A\ = 2, we
have that



Hence,

And, finally,

—_ eSt _ e2t _e3t eZt
=10 +9()A= ( f(t)zgég(t) £(t) g+(tg)<t> ) - ( oty g ) ~

Strogatz, exercise 5.2.13
The equation of motion of the damped harmonic oscillator is
ma + b +kx=0.

Here x is the position, in one dimension, m is the mass, b the friction coefficient, and k is the
spring constant. All these constants are assumed to be positive.

From classical mechanis we learn to introduce the momentum p = mz, it gives the equa-
tions

i=L, p=—— k.
m m

An aside: does there exist a Hamiltonian function H such that

_ OH . 0H

& ==

T op b Ox

If so, we must have that

0 (0H 0 (0H o (p o (bp b
O=—|—]|—"5|=—|===(—)|—%=|—+kx)=——,
Ox \ Op Op \ Ox oxr \m Op \'m m
hence b = 0, meaning there is no damping. Strangely enough, however, even when b # 0 it is

possible to find a Hamiltonian function which is explicitly time dependent. Multiplying the
original equation of motion by e*, where a = b/m, we may rewrite it like this:

% (eat mx) +ekr=0.

t

Then we define p = e* ma and

2m 2

H=e¢e

Back to our linear system of equations

(1)) = a(t )

The sum of the eigenvalues of the matrix A is

T:TI“A:—£<O,
m



and their product is
A=detA= E > 0.
m

Since A > 0, both eigenvalues must have a negative real part, hence the origin is always a
stable fixed point. It is a stable node if the eigenvalues are real, that is, if

b — 4k
2 —4A = 72?” >0, or equivalently, b>2vVkm .
m

This is the case called overdamping: the damping is so large that the oscillator does not
oscillate even once. The limiting case b = 2v/km is called critical damping.

In the opposite case, b < 2v/km, the origin is a stable spiral, which means that the dam-
ping is small enough that the oscillator will really oscillate, with an exponentially decreasing
amplitude.

The case of critical damping is interesting. Any matrix satisfies its own eigenvalue equa-
tion, and in particular, our 2 x 2 matrix A satisfies the equation

(A=MI)(A—=XI)=0,
where Aq, Ay are the eigenvalues. When the damping is critical, it means that Ay = As, and
(A= MI)?=0.

If a 2 x 2 matrix has two linearly independent eigenvectors with the same eigenvalue, then it
is proportional to the identity matrix I. In the present case it is obvious that A— A1 # 0, this
means that A has two equal eigenvalues, but only one eigenvector. Since we have (A—X1)¥ = 0
for k > 2, the series expansion for e(A=*11) gives that

et = Mt tA=MD) — Mt (T 4 (A — N\ T)) .

Thus, the general solution of the equation of motion for the oscillator is

w(t) \ _ ea #0) ) _ e N 2(0)
(p(t) ) —eA<p(0) ) =M (T4 t(A )qI))(p(O) )

There are now two possibilities. Let us define

w:(A)qI)(]ng;) .

We may have w = 0, this means that the starting point (z(0),p(0)) lies on the single eigen-
vector of A, and the solution is purely exponential,

The other possibility is that w # 0. Then w is proportional to the single eigenvector of A,
since the identity (A — A1) = 0 implies that

(A= MDw = (A — \1I)? ( ;(0) ) =0.
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Then as ¢t — oo we have that
x(t) At
—teMtw.
( p(t) )

We see that, in the case of critical damping, for an arbitrary staring point (x(0),p(0)) the
system will converge exponentially towards the stable fixed point (z,p) = (0,0) along the
direction of the single eigenvector of A.



